Cortical Spike Synchrony as a Measure of Input Familiarity

نویسندگان

  • Clemens Korndörfer
  • Ekkehard Ullner
  • Jordi García-Ojalvo
  • Gordon Pipa
چکیده

Spike synchrony, which occurs in various cortical areas in response to specific perception, action, and memory tasks, has sparked a long-standing debate on the nature of temporal organization in cortex. One prominent view is that this type of synchrony facilitates the binding or grouping of separate stimulus components. We argue instead for a more general function: a measure of the prior probability of incoming stimuli, implemented by long-range, horizontal, intracortical connections. We show that networks of this kind-pulse-coupled excitatory spiking networks in a noisy environment-can provide a sufficient substrate for stimulus-dependent spike synchrony. This allows for a quick (few spikes) estimate of the match between inputs and the input history as encoded in the network structure. Given the ubiquity of small, strongly excitatory subnetworks in cortex, we thus propose that many experimental observations of spike synchrony can be viewed as signs of input patterns that resemble long-term experience-that is, of patterns with high prior probability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spike-timing-dependent synaptic plasticity can form "zero lag links" for cortical oscillations

We study the impact of spike-timing-dependent synaptic plasticity (STDP) on coherent gamma activity between distant cortical regions with reciprocal projections. Our simulation network consists of two areas and includes a STDP model re4ecting e5cacy suppression between pre/ postsynaptic spike pairs as found in recent experiments during stimulation with spike trains (Nature 416 (2002) 433). We 8...

متن کامل

Spike synchrony generated by modulatory common input through NMDA-type synapses.

Common excitatory input to neurons increases their firing rates and the strength of the spike correlation (synchrony) between them. Little is known, however, about the synchronizing effects of modulatory common input. Here, we show that modulatory common input with the slow synaptic kinetics of N-methyl-d-aspartate (NMDA) receptors enhances firing rates and also produces synchrony. Tight synchr...

متن کامل

GABAergic and glutamatergic modulation of spontaneous and motor-cortex-evoked complex spike activity.

Olivocerebellar activity is organized such that synchronous complex spikes occur primarily among Purkinje cells located within the same parasagittally oriented strip of cortex. Previous findings have shown that this synchrony distribution is modulated by the release of GABA and glutamate within the inferior olive, which probably act by controlling the efficacy of the electrotonic coupling betwe...

متن کامل

Rapid Temporal Modulation of Synchrony by Competition in Cortical Interneuron Networks

The synchrony of neurons in extrastriate visual cortex is modulated by selective attention even when there are only small changes in firing rate (Fries, Reynolds, Rorie, & Desimone, 2001). We used Hodgkin-Huxley type models of cortical neurons to investigate the mechanism by which the degree of synchrony can be modulated independently of changes in firing rates. The synchrony of local networks ...

متن کامل

Synaptic Mechanisms of Tight Spike Synchrony at Gamma Frequency in Cerebral Cortex.

UNLABELLED During the generation of higher-frequency (e.g., gamma) oscillations, cortical neurons can exhibit pairwise tight (<10 ms) spike synchrony. To understand how synaptic currents contribute to rhythmic activity and spike synchrony, we performed dual whole-cell recordings in mouse entorhinal cortical slices generating periodic activity (the slow oscillation). This preparation exhibited a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural computation

دوره 29 9  شماره 

صفحات  -

تاریخ انتشار 2017